Simplifying microbial electrosynthesis reactor design

نویسندگان

  • Cloelle G. S. Giddings
  • Kelly P. Nevin
  • Trevor Woodward
  • Derek R. Lovley
  • Caitlyn S. Butler
چکیده

Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional 'H-cell' reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A logical data representation framework for electricity-driven bioproduction processes.

Microbial electrosynthesis (MES) is a process that uses electricity as an energy source for driving the production of chemicals and fuels using microorganisms and CO2 or organics as carbon sources. The development of this highly interdisciplinary technology on the interface between biotechnology and electrochemistry requires knowledge and expertise in a variety of scientific and technical areas...

متن کامل

Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control

Microbial electrosynthesis is a useful form of technology for the renewable production of organic commodities from biologically catalyzed reduction of CO₂. However, for the technology to become applicable, process selectivity, stability and efficiency need strong improvement. Here we report on the effect of different electrochemical control modes (potentiostatic/galvanostatic) on both the start...

متن کامل

Operational and technical considerations for microbial electrosynthesis.

Extracellular electron transfer has, in one decade, emerged from an environmental phenomenon to an industrial process driver. On the one hand, electron transfer towards anodes leads to production of power or chemicals such as hydrogen, caustic soda and hydrogen peroxide. On the other hand, electron transfer from cathodes enables bioremediation and bioproduction. Although the microbiology of ext...

متن کامل

Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.

The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electroch...

متن کامل

Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata

BACKGROUND Microbial electrosynthesis (MES) and gas fermentation are bioenergy technologies in which a microbial catalyst reduces CO2 into organic carbon molecules with electrons from the cathode of a bioelectrochemical system or from gases such as H2. The acetogen Sporomusa ovata has the capacity of reducing CO2 into commodity chemicals by both gas fermentation and MES. Acetate is often the on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015